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Abstrast. By means of the non-classical Lie approach and the direct method, all the 
similarity reductions of the Kupershmidt equations are found. Two reduction equations 
which can also be obtained by the classical Lie approach are the Painlev6 type I1 and IV 
respectively. The other three reduction equations which cannot be obtained by the classical 
Lie approach are only linear or Riccati type. 

1. Introduction 

The equations goveming the propagation of long waves in shallow water consist of 
pair of coupled first-order partial differential equations (PDES) which can be interpreted 
as a Hamiltonian system in several different ways [l]. One remarkable model is the 
so-called Kupershmidt equations 

(1) 
(2) 

A(2) = -u t  + uu, + h,+ Cu, = 0 

A(2) 2 = - h, + uh,+ hu, - Ch, = O  

which admit the tri-Hamiltonian structure and the infinitely many conservation laws 
[2], where subscripts are partial differentiations. 

The symmetry reduction method is a powerful tool to seek the soIutions of PDES. 
The standard method for finding similarity reductions of a given PDE is to use the 
classical Lie approach [3-51, Fahrunisa Neyzi and Y a m  Nutku [5] had used the 
method to reduce (1) and (2) and pointed out that Kuperschmidt equation is oFPainlev6 
type 11. Kawamoto, Paquin and Winternitz had also used the method and get FI PainlevC 
IV type reduction 161. Recently, Clarkson and Kruskal developed a direct and simple 
method to reduce a given PDE to some ordinary differential equations  ODE^) [7-91 or 
some PDES in lower dimensions [lo]. Furthermore, Levi and Wintemitz [ I I] had pointed 
out that all the similarity reductions obtained by the direct method for the single PDE 
cases can also be obtained by the ‘nonclassical method’ due to Bluman and Cole [12]. 

In section 2 of this paper, we will extend the direct method to the PDES system 
case: Kuperschmidt equations (1) and (2). Five types of the similarity solutions are 
obtained. The first two of them are just the PainlevC type I1 and IV reductions obtained 
by the classical Lie approach and the other three types of reduction equation are only 
linear or Riccati type equations. The group theoretical interpretation for the latter 
three types of reduction equations is given in section 3. Section 4 is a summary and 
discussions. 
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2. Symmetry reductions of the Kupershmidt equations by the direct method 

Analogous to the application of the direct method to the single PDE cases [7-101 we 
can easily prove that it is sufficient to seek the similarity reduction of the Kupershmidt 
equations in the special forms 
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u(x ,  t ) = a ( x ,  O + P ( x .  r ) w ( z ( x ,  0 )  
h(x, t ) = A ( x ,  O+B(x,  t ) Q ( z ( x ,  0).  

(3) 

( 4 )  

Substituting (3) and (4) into (1) gives 

c p z : w " + ( p z , + a p z , + 2 c ~ ~ ~ + c p z ~ ) w ' + ( p , + n p , + p a ~ + c p ~ ) w  

+ppxw2+p2Zxww'+BZ,Q'+ B , Q + a , + a a x + A x + C a ~ = O  ( 5 )  

A ~ Z ~ W ' +  ( A ~ ) , w  - C B Z : Q  + (BZ, + a ~ z ,  -ZCB,Z, - CBZ-) Q 

+(B,  +Be ,  +a& - CB,)Q+(Bp),Qw + BpZx(Qw)' 

+ A ,  + a d +  aA, - CA, = 0 (6)  

where primes are derivatives with respect to 2. 
Equations ( 5 )  and (6)  are ODES of w and Q only for the ratios of the coefficients 

of different derivatives and powers of w and H being functions of Z. That is to say 
that the following constrained conditions for Z, # 0 must be satisfied: 

~ Z , + ~ P S + ~ C P J ~ +  cpz,=pz:r,(z) (7) 

P, + UP, + + CP, = pz:r,(z) (8) 

ppX = pzx,(z) 19) 

P*Z, = p z : r m  (10) 

BZ, = pz:r,(z) (11) 

B, = a r m  (12) 

a, + aaX +A, + Ca, = pZ:r,(Z) (13) 

APZ, = BZ:TS(Z) (14) 

( A P X  = B Z : r d Z )  (15) 

BZ, + EBZ, - 2CBXZx - CBZ, = BZ:r lo (Z)  (16) 

where C ( Z )  ( i  = 1,2, .  . . , 14) are some arbitrary functions of Z to be determined. 
Similar to the single PDE cases [7-101, solving (7)-(20), we get the only possible 
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independent similarity reduction for Z, # 0: 

1 
O 

U = -- (&x+ A,) + Ow(Z) 

h = S2Q(Z)  Z = B x + A  

8, = Doe3 

A, = 2D00'A, + DiO4A - C1O4 

CW"+ W W )  + Q' - D;Z+ c1 = o 
- C Q  + Do Q + ( Qw)' = 0 

with Do and C, being arbitrary constants. There exist two subcases for further dis- 
cussions: (a) Do = 0 and ( b )  Do = constant # 0. 

(i) When D,,=O, (21)-(26) become 

1 
(27) 

(28) 

(29) 

= -- (4- D:t)+ D,w(Z)  
DI 

h = D:Q(Z) 

Q = -fl - C I Z  - 4 ~ ' -  CW' 

2 = D,x + (-;D;t'+ D2t + D3) 

and w satisfies the ODE: 

CZw"-( C1Z+f,)w'-$w2w'- C1w = 0 

where D,, D2, D3 and f l  are all arbitrary constants. The reduction equation (30) is 
just the result obtained by the classical Lie approach. Taking the transformations 

w ( Z )  =2c:'3c'/3wl(5) ~=c:~3c-*/3z+flc;1 (31) 

for equation (30) leads to the PainlevC I1 equation 

w;=w:+2~wl+f i  (32) 

with fi an another integral constant. 
(ii) When Do = constant # 0, the symmetry reduction equations become 

U=-  Do Ji: 42 l +  W(Z) x+- DoA2-- Doh, 
2(D,-Dot) 2 2 Dl - Dot [2(Dl-  Dot)]"' (33) 

(34) 

(35) 
C z= - + A I  +A2(D, - D,J)l'Z+l 

X 

[2(Dl-Dot)"2 (Dl-Dot)"' D; 

and 
c2w"'+(@&Z2- C I Z -  DoC-fl)w'-fDow 2 -TW 3 2  w'+(D;Z- C,)W 

+fD;Z'- DoCIZ-  DiC- Oafl = O  (37) 
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where D,, A I ,  A,, and fi are all arbitrary constants. By means of the following 
transformations 
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equation (37) becomes the Painlev6 type IV equation 

P dZY 
dx2-2y dx Y 

( - d y ) 2 + ~ y 3 + 4 ~ Z + 2 ( ~ '  - a)y +- 
where p is an integral constant and 

(39) 

When constants C, and A2 are taken as zero, this type of reduction is just that obtained 
by Paquin and Wintemitz 161. 

Similarly, in 2, = 0 case, we can also get only three independent similarity solutions. 
(iii) In the first solution, we have 

U = w ( t )  (41) 

h = T,x+ Q( t )  

wf+r,=o 
p+r,w = o 

with r4 being an arbitrary constant. Now the reduced ODES of w and Q equations are 
only linear equations. The general solutions of (43) and (44) read 

w = -Tat+ d ,  (45) 

Q =fTit2-I'4dlt+d2 (46) 

where d ,  and d, are two integral constants. 
(iv) In the second case, we have 

U = -C1+(x+ C,t+C,)W(f) 

h = Q(t) 

w ' + w Z = 0  

Q'+ Qw = 0. 

In this case the reduction equations of w is a simple Riccati equation and the Q 
equation (50) is only a linear one. Their general soluttons are 

1 
t+  to 

w =- 

where C,, C, and C3 are also constants of integration. 
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(v) In the third case, we have 

1 
tct, 

U =-- x +  w ( t )  

h =-- 'I x + Q ( t )  
( t+to)z  

W Cl w'+--+-- 0 
( L ' f t O )  ( t+to)2-  

Q c1 w Q+-+-- 
( t  + to) ( t  + to)> - O. 

In this case, the w and Q equations are all linear equations with the general solutions 

wo C, ln(r + to) w=-- 
t + t o  t + t o  

where wo, Qo, C, and to are all arbitrary constants. 

3. Similarity reductions from the non-classical method 

In order to use the 'non-classical method' of Bluman and Cole [12], we insert two 
conditional constrained equations at first 

A ~ ' ) = T u , + x u , - u = o  (59) 
and 

A$') E Th, + Xh, - H = 0 (60) 

where T, X ,  H and U are some undetermined functions of x, t, U and h. Now we 
apply the standard algorithm that provides the symmetry algebra, i.e. the Lie algebra 
of the Lie group of local point transformations leaving the joint solutions set of 
equations (I), (Z), (59) and (60) invariant. The vector field has the form 

a a  d a V =  T - + X - +  U-+ H- 
a t  ax a u  ah 

where T, X ,  U and H are the same as in (59) and (60). The algorithm starts by 
constructing the prolongation of the vector field V,  i.e. differential operator of the form 

a a a a a a 
aux a ah, ah, au,, a ha, 

pr"'V= V +  { Ux} -+{ U,} -+ { H x }  -+Iff,} -+ {Urx} -+{HAY} - (62) 

where the functions {Ux} ,  {U,}, {Uxx},  { H x } ,  {H,}  and {&} are the first anid second 
extensions. They can be expressed in terms of T, X, U, H and their derivatives. For 
instance, 

{ H x } =  H,+H.U,+Hhh,-h,(X,+X.Y,+Xhh,)-h,(T,+ T.u,+ Thh,) (63) 

{Ht}= H,+H.u,+Hhh,-h,(X,+X.u,+X,h,)-h,(T,+T.u,+ Thh,) (64) 
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{Hxx}  = H,, + ~H,u, +2Hx,,hx + H,, .U~~2H~~kxUx + H.u, + Hhhk:i Hjthx, 

-2h,(X,+ X,U, + Xih,) -2h,,( T,+ T.u,+ Thhx) 

- hxm+2X,u, +2X,hxi xnuU:+ 2XuhUxhx+Xhhh:+ x.Um -b xhk) 

- k,( T, +~T,.u, +2Txhhx + T& +2T.,~,k, + Tbhh: i T,u, + Thhrr). 
(65) 

Then applying the prolongation to the four equations, (11, (2) ,  (59) and (60), yields 

pr(z)AY)lAi2a,Ay~o = 0 i = l , 2  j = l , 2  (66) 
pr( '~A~')~A;~o,A~?a = 0 ~ i = 1,2 j = 1,2. (67) 

Equations (67) are satisfied identically while equations (66) lead to a set of determining 
equations that must :be solved. For further discussions we consider two different cases 
to write down and partially solve the equations: T# 0 and T = 0. 

Case 1: when T #  0, we can put T = 1 with no loss of generality. After insert the 
ansatz 

X = a ( t ) x + A ( t )  (68) 

H = n ( t ) k  (69) 

U=O(t),+ y(t) (70) 

into the determining equation system, we get 

a=-28( t )  P = - 8 ( t )  (71) 

8, +26*= 0 (72) 

y,+2y8 = 0 (73) 

A, + 2A8 - y=O. (74) 
To solve (72)-(74) there exist two subcases. 

the vector fields have the form 
Case 1,: 8 =0, y =  yo ,  A =  yoYof+Ao with yo and A, being arbitrary constants, i.e. 

a J a 
d t  ax au 

V = -+ ( yof + Ao) -+ yo -. 

After solving the Lagrange conditions 

(75) 

we re-obtained the first type of reduction solution given in case (i) of the last section. 
Case 1,: 

Az A =  
D,-Dot Do 
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with Do, D , ,  A ,  and A2 being arbitrary constants, i.e. the vector fields can be written, 
after multiplying V by (D,-D,,t>, as 

A, 
Do 

Dox-- (DI -Dot)]  

Substituting (80) into (76), we can easily find the invariant dependent and independent 
variables. The final reduction solutions is just the case (ii) obtained by the direct 
method shown in section 2. In fact, (75)  and (80) can also be obtained by the classical 
Lie approach that is to say, (75) and (80) are also the solutions of the equations 

pr‘2’A$2’IA~~o = 0 i = l , 2 .  (81) 
Case 2: when T =  0, we can put X = 1 without loss of generality. Similar to T # 0 

case, after putting the ansatz 

U = a ( x ,  t )u+@(x,  t )  (82) 

H = S(t) (83) 
into the determining equation system, we have 

aS=O (84) 

a, + a2= 0 ( 8 5 )  

a,+ap=0 (8-5) 

p ,  + p* = 0 (87) 

p,+CYp=0 (88) 

s,+zps=o. (89) 

and 

It is easy to prove that there exist three types of solutions of (84)-(89). 
Case 2,: 

CY=p=0 S = constant = r4 (90) 
i.e. 

J J v =-+ r4 -. 
JX ah 

The corresponding similarity reduction is just the case (iii) of the direct method. 
Case 2,: 

1 C, 
= x +  C,f + c, S=O a =  

x + c, t + c2 
where C, and C2 are arbitrary constants. After multiplying the vector fiald V by 
x+C,r+C2,  weget 

a J v =  (x+ C , t +  C,) -+ (U + C,) -. 
ax au (93) 

It is easy to find that after solving (76), the corresponding similarity reduction solution 
in this case coincides with the case (iv) of the direct method. 
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Case 2,: 

where to and C, are arbitrary constants. The corresponding vector fields V ,  multiplying 
by ( t+to)’ ,  read 

J J J 

Jx au ah v = ( t +  to)’ -+ ( f  + to) -+ c, - (95) 

and then the fifth type of the similarity reductions of the direct method which possesses 
the logarithmic branch points for time f follows immediately. 

One can easily prove that (91), (93) and (95) cannot be obtained by the classical 
Lie approach. That means the vectors shown by (911, (93) and (95) are not the solutions 

To summarize, two types of reductions can be obtained by the classical Lie approach, 
one is the Painlev6 type I1 and the other is the Painlev6 type IV. Three other types of 
the reductions for the Kupershmidt equations, case (iii) to case (v), can only be 
obtained by the non-classical Lie approach or the direct method and the reduction 
equations are only linear and Riccati type. 

In the reductions (ii) and (v), the algebraic branch points and logarithmic branch 
point for time f (rather than the singular manifold for space time) are contained 
respectively though the model possesses the Painlev6 property. There exist two different 
approaches for checking the Painlev6 property [13]. The first one is the so-called ARS 
algorithm established by Ablowitz, Ramani and Segur [14]. This approach requires 
that all the reductions of a given PDE system must be obtained at first and then check 
the Painlevd property for all the reduced ODES. The second one, proposed by Weiss 
ef al [15], pointed out that a PDE system will possess the Painlev6 property if its 
solutions are single-valued about a movable singularity manifold b(x,  t ) .  Furthermore, 
Kruskal [13,16] pointed out that the singularity manifold b ( x ,  t )  may be written as 
b(x, t )=x+$(f)  with $ ( t )  an arbitrary analytic function. In section 2 we see that 
$( t )  may be not an analytic function. So, two approaches for checking the PainlevC 
property of a PDE system are not completely equivalent. It is well known that the 
crucial point in the implementation of the ARS conjecture resides in obtaining all the 
reductions of a given PDE system. Fortunately, using the direct method developed by 
Clarkson et al [7-91 and/or the non-classical Lie approach, we can easily get all the 
reductions of a PDE system. 

of (81). 

4. Summary and discussion 

In this paper, by using a direct method and the non-classical method, we have obtained 
all the similarity reductions of the Kupershmidt equations in the special forms (3) and 
(4) which are equivalent to the most general reduction forms 
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The first two reduction equations which can be obtained by the classical Lie approach 
are the Painlev6 type I1 and IV respectively. The other reductions, cases (iii), (iv) and 
(v), have not yet been obtained before. All the reduced ODES (cases (i)-(v)) possess 
the Painlev6 property in spite of not only the poles but also the algebraic and the 
logarithmic branch points for time t can enter into the solutions of the Kupershmidt 
equations (see cases (ii) and (v)). It was pointed out in [17] that the Weiss-Kruskal 
approach for testing the PainlevC property requires that the singularity manifold is 
non-characteristic or, in +(x,  t )  = x + $ ( t )  $ ( t )  should be analytical function of t. But 
however, from the reduction solutions of the Kupershmidt equation, we see that +(x, t )  
may be characteristic or $ ( t )  may be not an analytical function, which indicates that 
the ARS algorithm should be used to study the Painlev6 property of a given PDE system. 
On other hand, we know also that it is a very difficult task to obtain all the similarity 
reductions needed in order to apply the ARS algorithm. Fortunately, using the direct 
method developed recently and used here and the non-classical symmetry reduction 
method, we can overcome this difficulty. In my opinion, it is not surprising that the 
algebraic and logarithmic branch points (rather than the arbitrary singular manifold) 
for time t can be included in the solutions of  some integrable models. For instance, 
the algebraic branch points 5 = x(ft)-”’ can be included into the self-similar solutions 
of the well known integrable model, modified Kdv equation [13], which have Painlev6 
property under the Weiss-Kruskal meaning [E]. The Kupershmidt equations are 
integrable because of the tri-Hamiltonian structure, and then the inlinitely many 
symmetries and conservation laws are admitted [Z]. On the other hand, because the 
branch points enter into the solutions which may indicate that the processes described 
by the Kupershmidt equations for fluid system are not invertible. 
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